4 research outputs found

    Asynchronous epidemic algorithms for consistency in large-scale systems

    Get PDF
    Achieving and detecting a globally consistent state is essential to many services in the large and extreme-scale distributed systems, especially when the desired consistent state is critical for services operation. Centralised and deterministic approaches for synchronisation and distributed consistency are not scalable and not fault-tolerant. Alternatively, epidemic-based paradigms are decentralised computations based on randomised communications. They are scalable, resilient, fault-tolerant, and converge to the desired target in logarithmic time with respect to system size. Thus, many distributed services have adopted epidemic protocols to achieve the consensus and the consistent state, mainly due to scalability concerns. The convergence of epidemic protocols is stochastically guaranteed. However, the detection of the convergence is probabilistic and non-explicit. In a real-world environment, systems are unreliable, and epidemic protocols cannot converge to the desired state. Thus, achieving convergence by itself does not ensure making a system-wide consistent state under dynamic conditions. The research work presented in this thesis introduces the Phase Transition Algorithm (PTA) to achieve distributed consistent state based on the explicit detection of convergence. Each phase in PTA is a decentralised decision-making process that implements epidemic data aggregation, in which the detection of convergence implies achieving a global agreement. The phases in PTA can be cascaded to achieve higher certainty as desired. Following the PTA, two epidemic protocols, namely PTP and ECP, are proposed to acquire of consensus, i.e. for the consistency in data dissemination and data aggregation. The protocols are examined through simulations, and experimental results have validated the protocols ability to achieve and explicitly detect the consensus among system nodes. The research work has also studied the epidemic data aggregation under nodes churn and network failures, in which the analysis has identified three phases of the aggregation process. The investigations have shown a different impact of nodes churn on each phase. The phase that is critical for the aggregation process has been studied further, which led to propose new robust data aggregation protocols, REAP and REAP+. Each protocol has a different decentralised replication method, and both implements distributed failure detection and instantaneous mass restoration mechanisms. Simulations have validated the protocols, and results have shown protocols ability to converge, detect convergence, and produce competitive accuracy under various levels of nodes churn. Furthermore, distributed consistency in continuous systems is addressed in the research. The work has proposed a novel continuous epidemic protocol with the adaptive restart mechanism. The protocol restarts either upon the detection of system convergence or upon the detection of divergence. Also, the protocol introduces the seed selection method for the peak data distribution in decentralised approaches, which was a challenge that requires single-point initialisation and leader-election step. The simulations validated the performance of the algorithm under static and dynamic conditions and approved that convergence and divergence detection accuracy can be tuned as desired. Finally, the research work shows that combining and integrating of the proposed protocols enables extreme-scale distributed systems to achieve and detect global consistent states even under realistic and dynamical conditions

    Agreement in epidemic data aggregation

    Get PDF
    Computing and spreading global information in large-scale distributed systems pose significant challenges when scalability, parallelism, resilience and consistency are demanded. Epidemic protocols are a robust and scalable computing and communication paradigm that can be effectively used for information dissemination and data aggregation in a fully decentralised context where each network node requires the local computation of a global synopsis function. Theoretical analysis of epidemic protocols for synchronous and static network models provide guarantees on the convergence to a global target and on the consistency among the network nodes. However, practical applications in real-world networks may require the explicit detection of both local convergence and global agreement (consensus). This work introduces the Epidemic Consensus Protocol (ECP) for the determination of consensus on the convergence of a decentralised data aggregation task. ECP adopts a heuristic method to locally detect convergence of the aggregation task and stochastic phase transitions to detect global agreement and reach consensus. The performance of ECP has been investigated by means of simulations and compared to a tree-based Three-Phase Commit protocol (3PC). Although, as expected, ECP exhibits total communication costs greater than the optimal tree-based protocol, it is shown to have better performance and scalability properties; ECP can achieve faster convergence to consensus for large system sizes and inherits the intrinsic decentralisation, fault-tolerance and robustness properties of epidemic protocols

    An adaptive restart mechanism for continuous epidemic systems

    Get PDF
    Software services based on large-scale distributed systems demand continuous and decentralised solutions for achieving system consistency and providing operational monitoring. Epidemic data aggregation algorithms provide decentralised, scalable and fault-tolerant solutions that can be used for system-wide tasks such as global state determination, monitoring and consensus. Existing continuous epidemic algorithms either periodically restart at fixed epochs or apply changes in the system state instantly producing less accurate approximation. This work introduces an innovative mechanism without fixed epochs that monitors the system state and restarts upon the detection of the system convergence or divergence. The mechanism makes correct aggregation with an approximation error as small as desired. The proposed solution is validated and analysed by means of simulations under static and dynamic network conditions

    Agreement in epidemic information dissemination

    Get PDF
    Consensus is one of the fundamental problems in multi-agent systems and distributed computing, in which agents or processing nodes are required to reach global agreement on some data value, decision, action, or synchronisation. In the absence of centralised coordination, achieving global consensus is challenging especially in dynamic and large-scale distributed systems with faulty processes. This paper presents a fully decentralised phase transition protocol to achieve global consensus on the convergence of an underlying information dissemination process. The proposed approach is based on Epidemic protocols, which are a randomised communication and computation paradigm and provide excellent scalability and fault-tolerant properties. The experimental analysis is based on simulations of a large-scale information dissemination process and the results show that global agreement can be achieved without deterministic and global communication patterns, such as those based on centralised coordination
    corecore